Comentaries on Prion Diseases and Ozone

(Ed.Note:  With the onslaught of diseases like “mad cow”, etc., this article takes on new and important meaning.  We need more clinical studies but it appears as if ozone may be effective here also.)

by Gérard V. Sunnen, M.D.


TO SUNNEN HOME

A number of diseases afflicting humans, animals and plants are, in contemporary times, stimulating great interest. This is due to the fact that these conditions do not follow traditional trajectories of infectivity, and that the responsible infective agents have poorly understood structural configurations and/or mechanisms of action.

Transmissible Spongiform Encephalopathies (TSEs) occur in humans and animals, and are characterized by progressive pathological effects upon the nervous system, invariably resulting in death. As their names suggest, they produce, usually over long periods of time, neuronal loss and gliosis, leading to microlacunae in brain tissue, which are apt to fill, by unknown mechanisms, with amyloid-like deposits.

Human TSEs include Creuzfeldt-Jacob disease (CJD), Familial fatal insomnia (FFI), Kuru, and Gerstmann-Straussler-Scheinker disease (GSS).

Animal TSEs include Scrapie in sheep, Feline spongiform encephalopathy (FSE), Chronic wasting disease in deer and ungulates, and of most concern in current times, Bovine spongiform encephalopathy (BSE). This concern is derived from evidence of transmission of TSEs from animals to humans.

These diseases were suspected of having viral origins, until the 1960's when T Alper suggested that the scrapie agent might have the capacity of replicating without the presence of nucleic acid. In 1982, S Prusiner coined the word prion, to stand for a new class of infective agents with highly novel characteristics.

Prions are not conventional viruses. Nucleic acid is apparently not necessary for their infectivity. In addition, they appear to interact with host genes, cell proteins, and cellular strucures in very complex and yet unchartered fashion.

Properties which further differentiate prions from viruses include their resistance to radiation, to heat inactivation, to DNAse and RNAse treatment, and to such protein-denaturing chemicals as phenols. These characteristics point to a protein structure in prions. Some prions have been shown to consist of glycoproteins with amino acid sequences approximating 250 units. There is no evidence at this time that prions contain lipid components.

It appears, interestingly, that, aside from the precise sequencing of amino acids within their structure, the spatial configuration of prions may play an important role in their pathogenecity, especially as it relates to the disruption of neuronal membranes. There is evidence that this is true in the case of scrapie prions which contain two highly hydrophobic regions capable of spanning such membranes. Presumably, an alteration in the molecular architecture of the prion could impair this capacity for membrane attachement, and thus compromise its destructive potential.

Prions, by all current evidence, are very precisely structured molecules, whose specific stereotaxis needs to be quintessentially intact for the expression of their infectivity.

Ozone has not yet been studied for the inactivation of prions or viroids (such as HDV). While the agents cited above such as heat, radiation, enzymes, and cleaving chemicals, have proven to be unsuccessful in inactivating prions, ozone has properties which are sufficiently distinct from these agents to embody a unique potential in offering novel mechanisms of prion destruction. Specifically, ozone has the proven ability to offer intense oxidizing action, which may provide a means of altering the prion's precisely tuned chemical and spatial design through:

  1. A demonstrated capacity to react with C-C bonds of organic origin, resulting in:
  2. The selective breakage of multiple bond linkages, thus permanently altering the crucially needed proper sequencing of amino acid units, thus inducing a probable alteration in their proper attachment and alignment to each other, and to associated components such as carbohydrate-and possibly lipids-and,
  3. The metamorphosis of the spatial configuration of the prion in its globality, which, experimental data shows, could have major implications in the mechanisms of its reproductive strategy, It is theoretically plausible that in compact molecular structures such as prions, whose amino acid sequences have been so precisely elaborated over long periods of time, that even miniscule alterations in their composition and/or configuration could insure their deactivation.
  4. Ozone's ability, when applied to fluids, to react with components of these fluids in the entirety of their volume and space, almost instantaneously. Ozone, as a gas, follows the laws of gas to liquid dynamics, as is thus distinctly and intrinsically different from all other inactivating agents.

 


From: Cann A J 1997 Principles of Molecular Virology. Academic Press, San Diego

The illustration shows two different spatial configurations of the same prion structure. The one on the right is infectious and pathogenic, while the other is not. The factors which promote prions to metamorphose their spatial architecture are unknown.

In conclusion, ozone offers unique capabilities to potentially destroy prions. Ozone, while altering these small infective protein molecules, is theoretically capable of exerting its contrapathogenic role, while leaving much larger and versatile protein and lipid molecules found in mammalian serum functionally intact.

BIBLIOGRAPHY

  • Cann A J 1997 Principles of Molecular Virology. Academic Press, San Diego
  • Diener T 0 1987. The Viroids. Plenum Press, New York
  • Eigen M 1996. Prionics or the kinetic basis of prion diseases. Biophysiological Chemistry Dec 10;63(1):1-18
  • Fleminger S et al Prion diseases 1997. British Journal of Psychiatry 170:103-105
  • Harrison P M 1997. The prion folding problem. Current Opinion in Structural Biology. Feb 7(1):53-59
  • Horwick A L et al 1997. Deadly conformations-protein misfolding in prion diseases. Cell. May 16;89(4):449-510
  • McCardle L 1997. Human prion diseases. British Journal of Biomedical Science 54(1):2-4
  • Prusiner S B 1995. The prion diseases. Scientific American 272:48-57
  • Razumovskii S D, Zaikov G E 1984. Ozone and its reactions with organic compounds. Elsevier, Amsterdam
  • Taylor D 1996. Inactivation of the causal agents of Creutzfeldt-Jacob disease and other prion diseases. Brain pathology 6(2):197-198
  • Will R G et al 1996. A new variant of Creutzfeldt-Jakob disease in the UK. Lancet 347:921-925

TO SUNNEN HOME


Gérard V. Sunnen M.D.
200 East 33rd St.
New York, NY 10016
212/679-0679 (voice)
212-679-8008 (fax)
 
BACK TO OXYTECH PAGES

 

1